In this study, multi-walled carbon nanotubes (MWCNTs) were functionalized by both sulfuric/nitric acids and amino acids to form COOH and NH2/COOH/OH groups on their surface, respectively. The functionalized MWCNTs were characterized by Fourier Transform Infrared Spectroscopy, titration test, thermal gravimetric analysis, and solvent stability test. The results revealed that in each method, the functional groups were successfully attached to the surface of nanotubes. Acid treatment grafted more oxygen-containing groups compared to commercial carboxylated MWCNTs. The amino acid functionalized MWCNTs indicated improved stability in different solvents compared to raw and acid treated MWCNTs. These functionalized MWCNTs were incorporated into epoxy resin and the properties of the nanocomposites were evaluated by scanning electron microscopy, tensile test, dynamic mechanical thermal analysis, differential scanning calorimetry, and thermogravimetric analysis. The morphology of the nanocomposites revealed that acid and amino acid treated samples had better interaction with the epoxy resin. Compared to epoxy sample contained raw MWCNT (control) and commercial carboxylated MWCNTs, the addition of functionalized MWCNTs to the epoxy resin improved the tensile strength by 39% and 25% (for acid treated) and 46% and 33% (for amino acid treated), respectively. The best tensile properties for acid and amino acid treated samples were reached by MWCNTs acid treated at 110℃ for 15 min and MWCNTs treated in a 50 g/L aqueous solution of amino acid, respectively. Storage modulus of the epoxy samples which contained acid and amino acid treated MWCNTs were 1560 and 1900 MPa, respectively. The glass rubber transition temperature ( Tg) of the epoxy samples containing acid and amino acid treated nanotubes were increased by 1.1℃ and 5.9℃, respectively, compared to the control sample. Therefore, based on these mechanical properties, the epoxy samples containing nanotubes functionalized by amino acid exhibited the highest performance in the epoxy nanocomposite. Incorporating acid and amino acid treated MWCNTs accelerated the curing process of epoxy where the curing temperature decreased by 9.1℃ and 13.3℃, respectively. Because of the reaction between amine groups grafted on MWCNTs in the amino acid treatment and epoxide groups of the epoxy resin, this acceleration was more significant in the case of amino acid sample. Note that addition of functionalized MWCNTs to epoxy resin did not lead to increased thermal stability.