AbstractFildes Peninsula, on King George Island, has been greatly influenced by recent rapid climate warming. Lakes are pervasive features of Fildes Peninsula landscapes, some of which are used as water sources for Antarctic stations. We studied seven Fildes Peninsula lakes to explore differences among lakes and between seasons in phytoplankton and bacterioplankton communities. We measured environmental variables, analysed pigments using high-performance liquid chromatography and examined bacterial DNA through high-throughput sequencing of the 16S rRNA gene. The main driver structuring microbial communities was the season (i.e. spring vs autumn). Chlorophyceae were the dominant phytoplankton group in all lakes and both seasons. Indicator bacteria for each season were identified, including Flavobacterium, Polaromonas and Oxalobacteraceae as indicators of spring conditions under thick ice, whereas Frankiales and Verrucomicrobia were indicator species of autumn following the ice-free summer. The indicator species for spring are generally observed in oligotrophic conditions, whereas many of the autumn indicators are commonly found in soils. There were lesser between-lake differences in microbial communities in autumn, at the end of the open-water period, than in spring at the end of the ice-covered period. This study will act as the basis for future assessments of changes in aquatic microbial communities.