Abstract

Under the influence of water diversion, the microbial community composition of estuarine waters and sediments might have complex spatiotemporal variations. Microbial interactions with N are significant for lake water quality. Therefore, the largest lake receiving seasonal water diversion in the North China Plain was selected as the study area. Based on 16S rRNA high-throughput sequencing and metagenomic sequencing techniques, this study analysed temporal (June–December) and spatial (estuary-pelagic zone) changes in the microbial community and functional gene composition of water and sediment. The results showed that the water microbial community composition had temporality, while sediment microbes had spatiality. The main causes of temporality in the aquatic microbial community were temperature and nitrate-N concentration, while those of sediment were flow velocity and N content. Additionally, there were complex interactions between microbial communities and N. In water, temporal variation in the relative abundance of N-related functional genes might have indirectly contributed to inorganic N composition in June (nitrite-N > ammonia-N > nitrate-N) and August (nitrite-N > nitrate-N > ammonia-N). High nitrate-N concentrations in December influenced the microbial community composition. In sediment, the estuary had higher N functional genes than the pelagic estuary, creating a relatively active N cycle and reducing total N levels in the estuary. This study revealed a potentially overlooked N sink and a flow velocity threshold that has great impacts on microbial community composition. This research contributes to a deeper understanding of the estuarine N cycle under the influence of water diversions, with implications for the calculation of global N balances and the management of lake water environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.