This study investigates the effects of electrical stimulation (EMS) combined with strength training on lower limb muscle activation and badminton jump performance, specifically during the "jump smash" movement. A total of 25 male badminton players, with a minimum of three years of professional training experience and no history of lower limb injuries, participated in the study. Participants underwent three distinct conditions: baseline testing, strength training, and EMS combined with strength training. Each participant performed specific jump tests, including the jump smash and static squat jump, under each condition. Muscle activation was measured using electromyography (EMG) sensors to assess changes in the activation of key lower limb muscles. The EMS intervention involved targeted electrical pulses designed to stimulate both superficial and deep muscle fibers, aiming to enhance explosive strength and coordination in the lower limbs. The results revealed that the EMS + strength condition significantly improved performance in both the jump smash and static squat jump, as compared to the baseline and strength-only conditions (F = 3.39, p = 0.042; F = 3.67, p = 0.033, respectively). Additionally, increased activation of the rectus femoris (RF) was observed in the EMS + strength condition, indicating improved muscle recruitment and synchronization, likely due to the activation of fast-twitch fibers. No significant differences were found in the eccentric-concentric squat jump (F = 0.59, p = 0.561). The findings suggest that EMS, when combined with strength training, is an effective method for enhancing lower limb explosiveness and muscle activation in badminton players, offering a promising training approach for improving performance in high-intensity, explosive movements.
Read full abstract