SiGe nanotubes (SiGeNTs) hold significant promise for applications in nanosolar cells, optoelectronic systems, and interconnects, where thermal conductivity is critical to performance. This study investigates the effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag SiGeNTs through molecular dynamics simulations. Results indicate that thermal conductivity increases with sample length due to ballistic heat transport and decreases with temperature as phonon scattering intensifies. Axial strain transitions from compression to tension enhance phonon propagation, improving conductivity. Chirality affects conductivity, with zigzag SiGeNTs consistently outperforming armchair structures, while diameter exhibits negligible impact. Non-equilibrium molecular dynamics simulations were conducted using the LAMMPS package with the Tersoff potential to model Si-Ge interactions. Thermal conductivity was computed via Fourier's law, with the system divided into regions for controlled heat input and dissipation. Lengths, diameters, temperatures (100-500K), and axial strains (- 6% to + 9%) were varied systematically. Phonon spectrum analysis was performed using Fourier transforms of velocity autocorrelation functions to compute.
Read full abstract