Spintronics devices have been a research hotspot due to their rich theoretical and application value. The widebandgap semiconductor β-Ga2O3 has excellent application potential in spintronics due to the controllability of its electron behavior via ultraviolet light. This paper employs first-principles calculations and the Wenzel–Kramers–Brillouin (WKB) approximation to comprehensively investigate spin transport based on magnetic tunnel junctions (MTJs) comprising β-Ga2O3 nanosheets. The magnetic moment of the ferromagnetic layer in β-Ga2O3 MTJs is found to be positively correlated with tunnel magnetoresistance (TMR). Interestingly, layer-number parity-dependent oscillation of TMR in β-Ga2O3 MTJs is observed, which is explained by the non-equilibrium Green function and the WKB approximation. TMR reaches a maximum of 1077% at five layers, and bias-dependent stability is observed in the monolayer model under biases of 0–20 mV. This study not only expands the application potential of β-Ga2O3 and predicts its superiority in spintronics but also enriches the related condensed matter theory.
Read full abstract