Abstract

Ferromagnetic insulators (FMIs) are intriguing not only due to their rare nature, but also due to their potential applications in spintronics and various electronic devices. One of its key promising applications is based on an FMI-induced magnetic proximity effect, which can impose an effective time-reversal symmetry breaking on the target ultrathin layer to realize novel emergent phenomena. Here, we conduct systematic studies on thin film LaCoO3, an insulator known to be ferromagnet under tensile strain, with varying thicknesses, to establish it as an FMI platform to be integrated in heterostructures. The optimal thickness of the LaCoO3layer, providing a smooth surface and robust ferromagnetism with large remanence, is determined. A heterostructure consisting of an ultrathin target layer (2 uc SrRuO3), the LaCoO3FMI layer, and the La0.5Sr0.5CoO3conducting layer has been fabricated and the angle-resolved photoemission spectroscopy measurement on the multi-layer system demonstrates a sharp Fermi edge and a well-defined Fermi surface without the charging effect. This demonstrates the feasibility of the proposed heterostructure using LaCoO3thin film as the FMI layer, and further lays a groundwork to investigate the magnetic proximity induced phases in quantum materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.