Phononic crystals are well known for acoustic wave manipulation which may have potential application in an underwater acoustic detection system. In this work, we design and simulate a two-dimensional Luneburg lens based on gradient-index (GRIN) phononic crystal that is composed of PLA-Air inclusion, and a novel application of GRIN phononic crystals is proposed to sound localization. The Luneburg lens has a broadband working range, from 1500 Hz to 7500 Hz, for acoustic wave focusing with sensitive directivity and signal-to-noise improvement. By searching maximum wave intensity’s position of the focusing beam, the propagating direction of an unknown sound wave can be directly recognized covering 360°. Besides, we redesign the conventional square-lattice Luneburg lenses using annular lattices for better performance. The annular-lattice Luneburg lens overcomes the weakness of configuration defect due to the square lattice. The numerical results show that the redesign Luneburg lenses have high accuracy for distance measurement from 5 m to 35 m through the triangulation location. In a word, this work tries to explore a novel application of phononic crystals in underwater acoustic positioning and navigation technology.
Read full abstract