Abstract
By using the transfer matrix method, we theoretically studied the propagation of a longitudinal acoustic wave in a one-dimensional phononic crystal (PnC) that contains a piezoelectric material as a defect layer. A pass band can be generated and controlled in the middle of the band gap. The pass band position is tuned by applying an external electric field. The position of the pass band inside the band gap is tuned by the changing of temperature. We introduce a comparison between temperature effects on two piezoelectric materials, PZT-5H and 0.7 PMN-0.3PT inside a PnC structure. Moreover, the pass band is shifted towards high or low frequencies by temperature decrement or increment, respectively. The simulated results provide a valuable guidance for PnC applications such as acoustic switch and temperature sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.