Abstract

Phononic crystals are well known for acoustic wave manipulation which may have potential application in an underwater acoustic detection system. In this work, we design and simulate a two-dimensional Luneburg lens based on gradient-index (GRIN) phononic crystal that is composed of PLA-Air inclusion, and a novel application of GRIN phononic crystals is proposed to sound localization. The Luneburg lens has a broadband working range, from 1500 Hz to 7500 Hz, for acoustic wave focusing with sensitive directivity and signal-to-noise improvement. By searching maximum wave intensity’s position of the focusing beam, the propagating direction of an unknown sound wave can be directly recognized covering 360°. Besides, we redesign the conventional square-lattice Luneburg lenses using annular lattices for better performance. The annular-lattice Luneburg lens overcomes the weakness of configuration defect due to the square lattice. The numerical results show that the redesign Luneburg lenses have high accuracy for distance measurement from 5 m to 35 m through the triangulation location. In a word, this work tries to explore a novel application of phononic crystals in underwater acoustic positioning and navigation technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.