A catalyst of the oxygen evolution reaction (OER) that is viable, affordable, and active for effective water-splitting applications is critical. A variety of electrocatalysts have been discovered to replace noble metal-based catalysts. Of these, transition metal-based sulfides are essential for incorporating carbonaceous materials to improve electrical conductivity, resulting in better electrocatalytic performance. Our study illustrates the synthesis of Cu2MnS2 (CMS) nanoflakes and their different rGO composites (10 to 40 wt %) via a hydrothermal technique for an effective water oxidation reaction. The X-ray diffraction pattern reveals that the prepared Cu2MnS2 nanoflakes exhibit a cubic crystal structure. The high-resolution scanning electron microscopy and the high resolution transmission electron microscopy images corroborate the formation of the nanoflake-like morphology of Cu2MnS2 with the strong interaction of rGO. The selected area electron diffraction analysis pattern reveals a polycrystalline nature. The Fourier transform infrared spectrum shows the existence of a metal sulfur vibrational band at 590 cm-1, and Raman analysis infers the presence of rGO. The X-ray photoelectron spectroscopy spectra reveal the oxidation states of the elements present in the samples. Using Brunauer-Emmett-Teller analysis, the surface area of CMS-20 is found to be 117.04 m2/g. The measured OER overpotentials using linear sweep volammetry and the values are 380, 370, 340, 376, and 400 mV at 10 mA/cm2 for CMS, CMS-10, CMS-20, CMS-30, and CMS-40, respectively, and the corresponding Tafel slope values are 179, 158, 149, 206, and 240 mV/decade, respectively. The electrochemical active surface area is estimated using cyclic voltammetry for all of the catalysts, where CMS-20 showed a larger surface area. Also, the same catalyst exhibits good stability for ∼24 h at a constant potential, which is confirmed via chronoamperometry. Thus, combining transition metal-based sulfides with carbonaceous materials indicates improved catalytic behavior for the preparation of high-performance OER electrocatalysts. Overall, the prepared CMS-20 performed as an efficient OER electrocatalyst and can be utilized for practical applications in energy conversion.
Read full abstract