With the increasing popularity of IoT, there has been a noticeable surge in security breaches associated with vulnerable IoT devices. To identify and counter such attacks. Intrusion Detection Systems (IDS) are deployed. However, these IoT devices use device-specific application layer protocols like MQTT and CoAP, which pose an additional burden to the traditional IDS. Several Machine Learning (ML) and Deep Learning (DL) based IDS are developed to detect malicious IoT network traffic. However, in recent times, a variety of IoT devices have been available on the market, resulting in the frequent installation and uninstallation of IoT devices based on users’ needs. Moreover, ML and DL-based IDS must train with sufficient device-specific attack training data for each IoT device, consuming a noticeable amount of training time. To solve these problems, we propose QuIDS, which utilizes a Quantum Support Vector Classifier to classify attacks in an IoT network. QuIDS requires very little training data compared to ML or DL to train and accurately identify attacks in the IoT network. QuIDS extracts eight flow-level features from IoT network traffic and utilizes them over four quantum bits for training. We experimented with QuIDS on two publicly available datasets and found the average recall rate, precision, and f1-score of the QuIDS as 91.1%, 84.3%, and 86.4%, respectively. Moreover, comparing QuIDS with the ML and DL methods, we found that QuIDS outperformed by 37.7%, 24.4.6%, and 36.9% more average recall and precision rates than the ML and DL methods, respectively.
Read full abstract