This study presents the design and simulation of an integrated multi-carrier optical source with a 227 GHz bandwidth for passive optical network (PON) applications. The optical comb generation attained using a photonic structure known as a micro-ring resonator fabricated in silicon nitride (Si3N4) facilitates cost reduction when produced on a large scale. Additionally, the generated optical comb accomplishes non-uniform tones in terms of the optical signal-to-noise ratio (OSNR), which allows for the dynamic assignment of carriers to retainable customers as a function of the data rate and transmission distance requirements. The design and simulation demonstrate the generation of frequency combs with optical carriers in a range of 5-40 tones, an OSNR range of 20-80 dB, and a free spectral range (FSR) of 50-3 610 GHz. To achieve these features, a geometric design of the device is proposed, and its response to variations of input laser parameters is described. In summary, the device uses two optical micro-resonators with radii of 100 and 450 µm and controls the power and the tuning of laser parameters. The proposed method allows generating a deterministic and reliable path to the frequency combs. Finally, the characteristics of the obtained combs are tested to determine their potential use in PON transmissions.
Read full abstract