Abstract

Directly-modulated laser (DML) is widely employed in intensity modulation and direct detection (IMDD) system due to its low cost and high output power. However, the corresponding frequency chirp is regarded as one of the main disadvantages for its application in passive optical networks (PONs). In this paper, we theoretically analyze the frequency response evolution of DML based system under different chirp and dispersion conditions, proving that the system bandwidth can be improved by interactions between negative dispersion and DML chirp. Based on this concept, we experimentally demonstrated downstream 50 Gb/s PAM4 signal transmission over 20 km single-mode fiber (SMF) access based on the 10 Gb/s DML operating at 1310 nm and avalanche photodiode (APD). A dispersion-shifted fiber (DSF) providing −150 ps/nm dispersion at 1310 nm in the optical line terminal (OLT) is used to pre-equalize the frequency response of bandwidth-limited directly modulated signals in the optical domain. Thanks to our proposed dispersion-supported equalization (DSE) technique, the system bandwidth can be improved by 5 GHz. Feed-forward equalization (FFE), decision feedback equalization (DFE) and Volterra filter are employed to evaluate the signal performance improvement, respectively. By evaluating the receiver sensitivity, the DSE combined with FFE scheme shows 2 dB improvement than the complex Volterra algorithm, indicating its potential to reduce the complexity of digital signal processing (DSP) and therefore a lower cost and power consumption in PON.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call