A new Ti-Al-Nb alloy with a composition of Ti-27.5Al-13Nb (at. pct) was proposed. The density of this alloy was 4.7 g/cm3, which is about 13 pct lower than that for O+B2 alloys. After hot processing, the alloy was heat treated under two conditions: directly aged at 850 °C (DA treatment), or cooled from above the β-transus temperature with a cooling rate of 3 °C/min and then aged at 850 °C (BCA treatment). Under the present heat-treatment conditions, the phase constitution was primarily O+α 2. A very fine Widmanstatten microstructure was obtained after the DA treatment, while a microstructure with coarse O plates was obtained after the BCA treatment. The tensile properties were investigated at 20 °C to 950 °C, and the creep behavior was investigated at 650 °C to 750 °C/90 to 380 MPa. The elongation to fracture at room temperature for the DA-treated tensile specimen was as high as 2.6 pct, despite the high Al content in this alloy. In comparison with the O+B2 ternary alloys, this alloy showed higher specific proof stress at temperatures over 800 °C and higher creep strength. The stress exponent and the apparent activation energy for creep were calculated. The fracture mechanism was discussed.