Colorectal cancer (CRC) is a common and life-threatening neoplastic disease that continues to pose a formidable challenge to global health. The present work was performed to evaluate the anticancer properties of betanin and betanin (BT) loaded starch nanoparticles (S-BT). The BT and S-BT were characterized by DLS, SEM, UV spectroscopy, XPS and FTIR. The cytotoxic effect was assessed by MTT and LDH assay. The apoptotic potential of BT and S-BT was assessed by DCFDA, Rh123, AO/EB and DAPI staining methods. Cell cycle arrest was depicted using flow cytometry. The antimetastatic potential of BT and S-BT was evaluated by wound healing assay. The S-BT showed a spherical morphology with a size of 175nm. The betanin contained SNPs were found to have strong encapsulation efficiency and favorable release profiles. Both BT and S-BT exhibited cytotoxicity in SW480 cells but S-BT displayed increased cytotoxicity when compared to BT alone. Loss of mitochondrial membrane potential, nuclear fragmentation, chromatin condensation and generation of ROS, all indicative of apoptotic mode of cell death, were revealed by fluorescence imaging. The cells were arrested in the G2M phase. Moreover, both BT and S-BT were able to inhibit the migratory potential of SW480 cells. Overall, our results indicated that both BT and S-BT were able to induce anticancer effects; and, S-BT was found to have increased therapeutic efficacy when compared to BT alone.
Read full abstract