Abstract

Multifunctional nanocomposites are of potential use to achieve complete tumor elimination and, thus, to avoid tumor recurrence. Herein, polydopamine (PDA)-based gold nanoblackbodies (AuNBs) loaded with indocyanine green (ICG) and Doxorubicin (DOX) termed as A-P-I-D nanocomposite were investigated for multimodal plasmonic photothermal-photodynamic-chemotherapy. Upon near-infrared (NIR) irradiation, A-P-I-D nanocomposite showed enhanced photothermal conversion efficiency of 69.2% compared to bare AuNBs (62.9%) due to the presence of ICG, along with ROS (1O2) generation as well as enhanced DOX release. On assessment of therapeutic effects on breast cancer (MCF-7) and melanoma (B16F10) cell lines, A-P-I-D nanocomposite showed significantly lower cell viabilities of 45.5% and 24% compared to 79.3% and 76.8% for AuNBs. Fluorescence images of stained cells revealed characteristic signs of apoptotic mode of cell death, with almost complete damage on A-P-I-D nanocomposite + NIR treated cells. Further, on evaluation of photothermal performance through breast tumor-tissue mimicking phantoms, A-P-I-D nanocomposite provided required thermal ablation temperatures within the tumor along with the potential for the elimination of residual cancerous cells through photodynamic therapy and chemotherapy. Overall, this study demonstrates that A-P-I-D nanocomposite + NIR provides better therapeutic outcome on cell lines and enhanced photothermal performance on breast tumor-tissue mimicking phantoms to be a promising agent for multimodal cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call