Ethnopharmacological relevanceHepatocellular carcinoma (HCC) is a common gastrointestinal malignancy in China. Most tumors develop from chronic inflammation. Artemisia rupestris L. (ARL) has been found to have a significant effect on viral influenza and hepatitis, but the mechanism of action of ARL against liver cancer is unclear. Aim of the studyThe study objective was to explore the mechanism of action of ARL for the treatment of hepatocellular carcinoma (HCC) by ethanol extract and in vitro experimental design. Materials and methodsInteractions between ARL and cellular target proteins against HCC were analyzed through network pharmacology and network topology with the utilization of the DAVID database. The rate of HepG2 cells' growth inhibition was assessed using the MTT assay in vitro cellular assay; hoechst33342 detects apoptosis of cells; the ability of HepG2 cells to migrate and invade was assessed using the transwell assay and the cell scratch experiment; and the levels of protein expression in HepG2 cells were assessed using the western blot assay. ResultsNetwork pharmacology prediction results demonstrated that 22 active ingredients were tested, 176 possible action targets were discovered, and the PI3K/Akt signaling pathway was found to be the most pertinent action pathway for the treatment of hepatocellular carcinoma. In vitro results showed that it can effectively restrict HepG2 cell proliferation, apoptosis, migration, and invasion as well as the regulation of protein expressions. ConclusionConclusively, Quercetin, Linarin, and Kaempferol were found most essential active ingredients from ARL that regulate the antitumor effects against HCC through the PI3K/Akt signaling pathway. The study provides a fundamental basis for further comprehensive evaluation of ARL to treat tumor diseases in general and its therapeutic potential against hepatocellular carcinoma in particular.