Abstract

Hepatic steatosis can cause liver dysfunction and cell injury, on which natural functional factors are expected to be an effective approach for long-term intervention. However, the cellular molecular mechanisms are unclear. Chlorogenic acid is a phenolic compound, which can regulate lipid metabolism and is abundant in burdock root. The aim of this study was to investigate the potential molecular mechanism of the effect of chlorogenic acid from burdock root (ACQA) on steatosis in HepG2 cells. In this study, we found that ACQA reduced the number of lipid droplets and lipid levels in oleic acid-treated HepG2 cells. Molecular mechanistic results showed that ACQA enhanced CPT-1 expression by activating AMPK-related signaling pathways, and the concentrations of Ca2+ and cAMP were increased with the intervention of ACQA. In addition, ACQA enhanced the β-oxidation of fatty acids, reduced alanine transaminase and aspartate transaminase, and inhibited apoptosis in oleic acid-treated HepG2 cells. Our studies elucidate a novel mechanism that ACQA enhances the β-oxidation of fatty acids through the AMPK/ACC/CPT-1 pathway to protect against steatosis in HepG2 cells, which provides insight into its molecular mechanism as well as intervention strategies for chlorogenic acid against fatty liver diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call