Anxiety disorders are some of the most common psychiatric diagnoses in children and adolescents, but attempts to improve outcome prediction and treatment have stalled. This review highlights recent findings on neural indices related to fear and anxiety that provide novel directions for attempts to create such improvements. Stimuli capable of provoking fear engage many brain regions, including the amygdala, medial prefrontal cortex, hippocampus, and bed nucleus of the stria terminalis. Studies in rodents suggest that sustained, low-level threats are particularly likely to engage the bed nucleus of the stria terminalis, which appears to malfunction in anxiety disorders. However, anxiety disorders, like most mental illnesses, appear less likely to arise from alterations in isolated brain regions than in distributed brain circuitry. Findings from large-scale studies of brain connectivity may reveal signs of such broadly distributed dysfunction, though available studies report small effect sizes. Finally, we review novel approaches with promise for using such large-scale data to detect clinically relevant, broadly distributed circuitry dysfunction. Recent work maps neural circuitry related to fear and anxiety. This circuitry may malfunction in anxiety disorders. Integrating findings from animal studies, big datasets, and novel analytical approaches may generate clinically relevant insights based on this recent work.
Read full abstract