Polymers are widely used in healthcare due to their biocompatibility and mechanical properties; however, the use of polymers in medical products can promote biofilm formation, which can be a source of hospital-acquired infections. Due to this, there is a rising demand for inherently antimicrobial polymers for devices in contact with patients. 3D printing as a manufacturing technology has increased exponentially in recent years. Surgical guides, orthotics, and prosthetics, among other medical devices, created by vat polymerization have been used in hospitals to treat patients. Biocompatible resins are available for these applications, but there is a lack of antimicrobial resins, which would further improve the technology for clinical use. The focus of this study was to assess settling of candidate antimicrobial metal and metal oxide fillers in vat polymerization resin to determine which fillers were compatible with the resin. Dispersion stability was assessed by measuring settling over the maximum print duration of the medium priced desktop 3D printers to evaluate printability of 17 potentially antimicrobial resins. Eight materials displayed settling behavior during the test period: molybdenum oxide, zirconium oxide nanopowder, scandium oxide, zirconium oxide, titanium oxide, tungsten oxide, lanthanum oxide, and magnesium oxide. No settling was observed for manganese oxide, magnesium oxide nanopowder, titanium oxide nanopowder, copper oxide, silver oxide, zinc oxide nanopowder, zinc oxide, silver nanopowder, and gold nanopowder during the test period. This method could be applied to assess settling of other fillers introduced into 3D printing resins before actual printing.