Abstract

Herein, biobased composite materials based on poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) as matrices, sodium hexametaphosphate microparticles (E452i, food additive microparticles, 1 and 5 wt%) as antimicrobial filler and acetyl tributyl citrate (ATBC, 15 wt%) as plasticizer, were developed for potential food packaging applications. Two set of composite films were obtained by melt-extrusion and compression molding, i) based on PLA matrix and ii) based on Ecovio® matrix (PLA/PBAT blend). Thermal characterization by thermogravimetric analysis and differential scanning calorimetry demonstrated that the incorporation of E452i particles improved thermal stability and crystallinity, while the mechanical test showed an increase in the Young's modulus. E452i particles also provide antimicrobial properties to the films against food-borne bacteria Listeria innocua and Staphylococcus aureus, with bacterial reduction percentages higher than 50 % in films with 5 wt% of particles. The films also preserved their disintegradability as demonstrated by an exhaustive characterization of the films under industrial composting conditions. Therefore, the results obtained in this work reveal the potential of these biocomposites as appropriated materials for antibacterial and compostable food packaging films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.