The nanomaterials-functionalized composite packaging film with antimicrobial performance has attracted more and more research interests. However, designing the multi-mode synergistic composite film for efficient and intelligent antibacterial is still a challenge. In this work, a Fe-MoOx functionalized chitosan composite film (CS/FM) was designed by doping the Fe-MoOx into chitosan film. CS/FM film inherited excellent photothermal performance and photothermal-enhanced oxidase-like activity of Fe-MoOx, which endow CS/FM film with superior antimicrobial ability. The optimal composite film (CS/FM0.2) able to killed ≥98.87% of S. aureus and ≥98.26% of E. coli, and could significantly inhibit the growth of P. expansum and P. italicum. Besides, CS/FM0.2 film also showed good water vapor permeability (0.71 × 10−10 g m−1 s−1 Pa−1) and tensile strength (58.16 MPa). Low hemolysis rate (≤ 4.91%), high cell viability (≥ 90.32%), and the normal body organs after being treated with Fe-MoOx verified the biosafety of CS/FM film. The tangerine preservation results indicated that CS/FM0.2 film could extend the shelf life of tangerine by at least 9 days and prevent the loss of tangerine nutrients. Our work boosted the development of designing composite packaging film with multi-mode synergistic antimicrobial effect via nanomaterials functionalized for food preservation.
Read full abstract