Abstract

Bacterial infected wounds bring an economic burden to the worldwide medical care field. A variety of bioactives-integrated hydrogel patches are developed in response to this challenge. Here, the melanin hydrogel inverse opal microneedle patches (MNs) with antioxidant and visual color sensing abilities for the management of bacterial infected wounds are proposed. The MNs are fabricated by applying melanin-loaded polyethylene glycol diacrylate (PEGDA) as the inverse opal hydrogel and using bacitracin-carried gelatin to fill those nanopores of hydrogel scaffold. Benefitting from the antioxidant capacity of melanin nanoparticles and the local antimicrobial ability of bacitracin, the resulting MNs possess the integrated functions of reactive oxygen species scavenging and antibacterial. Besides, the inverse opal structure endows the MNs with vivid structure color and detectable reflected wavelength, which can gradually shift with the release of the drug, thus allowing MNs to assess the drug delivery. Based on these characteristics, MNs perform excellent in in vitro drug delivery and monitoring, as well as the promotion of bacterial infected wound recovery in vivo, indicating the potential of MNs in the future wound management field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.