In this study, by innovative combining the unique characteristics of Cu-based metal-organic framework (MOF) with the versatile attributes of saccharides (i.e., heparin, Hep), a promising approach is established for active and passive targeting DDS, Cu-MOF/Hep, with a pH-controlled release profile and enhanced drug efficacy. The characterization of the synthesized materials (i.e., FT-IR, XRD, SEM, EDX, TEM, DLS, and TGA) confirms the successful synthesis of Cu-MOF/Hep. In vitro studies concerning the loading and release of DOX observed that a higher amount of DOX was released at pH 5 (>90 % on 96 h, 41 °C) compared to pH 7.4 (<10 % on 96 h, 37 °C). The sensitive feature of the used MOF to the pH conditions increased the drug release in environmental conditions similar to cancer tissues. Furthermore, cytotoxicity assessments indicated notable cytotoxicity effects of DOX-loaded Cu-MOF/Hep on MCF-7 cells (IC50: ∼10 μg/mL in 48 h) with a significant apoptosis rate. The existence of CD44 receptors on the surfaces of cells underscores the significance of Hep-modified systems in facilitating the apoptosis of cancerous cells. The results suggest that the combined Cu-MOF and Hep have the potential to be a viable option for creating platforms that deliver anticancer treatments.
Read full abstract