Abstract
By functionalizing [60]Fullerene (C60) and [60]Boron-Nitride ([60]BN), novel systems are proposed under two alternatives according to the intruder localization modes. To detail their bindings with Doxorubicin (DOX) and Boronic Chalcone (BCHA), we studied the azomethine ylide (AZMYtrp and AZMYtyr) addition impact on the drug-loading efficacy. As a result, the formation of reactive [60]CBNAZMYtrp nanocarriers mainly proceeded through photoexcitation on the triplet state, in contrast to those of [60]BNCAZMYtrp. The addition of amino acids strongly improved the interaction between DOX/BCHA and mono- and bis-nanocarriers compared to isolated anticancer drugs randomly dispersed in the solvent. Eight possible bis-nanocarriers regioisomers are cheeked for the second AZMYtrp addition sites. In fact, the trans1 isomer is considered as the most stable to adsorb DOX-DOX, DOX-BCHA or BCHA-BCHA with mole fraction of about 84 %. The lowest electronic bandgap (0.529 eV) of B25N25C10AZMYtyrAZMYtyr confirmed that the presence of hydrogen-bonding and OH-π, CH-π and CO-π interactions improved the binding affinity of bis-nanocarriers with DOX-DOX. The AZMYtrp indole ring hydrogen is bonded with the anticancer drug hydroxyl group and stabilized DOX-DOX-bis-nanocarriers complexes. The formation of new sp3 regions and π-π interactions with the carbon-doped [60]BN decreased the bandgap (0.64 eV) and stabilized the B25N25C10AZMYtyrAZMYtyr-DOX-BCHA complex.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have