We report the first in vivo study demonstrating tyrosine phosphorylation of mammary gland proteins including the prolactin receptor, in response to the injection of prolactin. Immunoblotting of mammary gland membrane extracts revealed that subunits of 200, 130, 115, 100, 90, 70, and 45 kDa display increased tyrosine phosphorylation within 5 min of prolactin administration. The 100-kDa component was identified as the full-length prolactin receptor by a variety of means including immunoprecipitation and immunoblotting with monoclonal (U5, 917, 110, and 82) and polyclonal (46) antibodies to the prolactin receptor. Maximal receptor phosphorylation was seen within 1 min of hormone injection, and to obtain a strong response it was necessary to deprive rabbits of their endogenous prolactin for 36 h. Rapid tyrosine phosphorylation of the full-length receptor was verified by its demonstration in Chinese hamster ovary cells stably transfected with rabbit prolactin receptor cDNA. Both in vivo and in vitro, the phosphorylation signal was transient, being markedly reduced within 10 min of exposure to prolactin. Tyrosine-phosphorylated receptor was shown to be associated with JAK 2 by immunoblotting of receptor immunoprecipitated from transfected Chinese hamster ovary cells with polyclonal 46. A 48-kDa ATP-binding protein was also shown to be associated with the mammary gland receptor by U5 or polyclonal 46 immunoprecipitation of receptor complexes following covalent labeling with [alpha-32P]azido-ATP. Our demonstration of prolactin receptor tyrosine phosphorylation raises the possibility of signaling pathways regulated by receptor/SH2 protein interaction, which would facilitate prolactin specific responses. The fact that a period of hormone deprivation is needed for significant hormone triggered receptor phosphorylation indicates that the mammary gland receptor exists in a largely desensitized state in vivo, analogous to the related growth hormone receptor.