Recent research dealing with magnetocaloric effect (MCE) study of antiferromagnetic (AFM) low dimensional spin systems have revealed a number of fascinating ground-state crossover characteristics upon application of external magnetic field. Herein, through MCE investigation we have explored field-induced quantum level-crossing characteristics of one such spin system: (NCP), an AFM spin 1/2 dimer. Experimental magnetization and specific heat data are presented and the data have been employed to evaluate entropy, magnetic energy and magnetocaloric properties. We witness a sign change in magnetic Grüneisen parameter across the level-crossing field BC. An adiabatic cooling is observed at low temperature by tracing the isentropic curves in temperature-magnetic field plane. Energy-level crossover characteristics in NCP interpreted through MCE analysis are well consistent with the observations made from magnetization and specific heat data.
Read full abstract