Abstract

We propose a class of quantum simulators for antiferromagnetic spin systems, based on coupled photonic cavities in presence of two-photon driving and dissipation. By modeling the coupling between the different cavities through a hopping term with negative amplitude, we solve numerically the quantum master equation governing the dynamics of the open system and determine its non-equilibrium steady state. Under suitable conditions, the steady state can be described in terms of the degenerate ground states of an antiferromagnetic Ising model. When the geometry of the cavity array is incommensurate with the antiferromagnetic coupling, the steady state presents properties which bear full analogy with those typical of the spin liquid phases arising in frustrated magnets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.