Introduction. The Russian telecommunications industry is on the threshold of introducing 5G/IMT-2020 (5G) mobile communications. The expected technological innovations of the new generation standard will lead to an increase in the capacity of mobile operators ‘ networks, data transfer speeds, the emergence of new scenarios for the use of mobile communications and the development of innovative digital services. This will contribute to economic growth by increasing labour productivity, automation and introducing new technologies in various economy and human activity areas. At the same time, the electromagnetic environment (EMO) in the areas where people stay will also change. The purpose of the study is to consider the unique features of the architecture of the 5G network to predict the impact on the population of electromagnetic fields (EMF) of the radio frequency (RF) range. Material and methods. The study is analytical. The information base of the research was Russian strategic documents on the development of 5G technologies, articles published in domestic and foreign journals. Results. The primary input data for the construction of 5G networks are presented, allowing us to evaluate EMO and identify the new technology features that are significant in terms of the impact of RF electromagnetic fields on the population. The 5G network uses previously unused RF bands and new types of antennas. With the introduction of 5G, the density of base stations (BS) and access points will significantly increase, the heights of BS antennas will decrease, and the spatial and temporal characteristics of electromagnetic radiation will change substantially. Conclusion. The architecture of the 5G network differs significantly from the mobile communication standards of previous generations. The introduction of 5G networks will lead to a significant change in the electromagnetic background in the environment. An urgent task is to develop a theory of hygienic regulation of RF EMF for the population in a complex electromagnetic environment with simultaneous operation of 5G networks and previous generations and new approaches to determining the levels of EMF in the environment by computational and instrumental methods.
Read full abstract