By means of a unifying measure-theoretic approach, we establish lower bounds on the Hausdorff dimension of the space-time set which can support anomalous dissipation for weak solutions of fluid equations, both in the presence or absence of a physical boundary. Boundary dissipation, which can occur at both the time and the spatial boundary, is analyzed by suitably modifying the Duchon & Robert interior distributional approach. One implication of our results is that any bounded Euler solution (compressible or incompressible) arising as a zero viscosity limit of Navier–Stokes solutions cannot have anomalous dissipation supported on a set of dimension smaller than that of the space. This result is sharp, as demonstrated by entropy-producing shock solutions of compressible Euler (Drivas and Eyink in Commun Math Phys 359(2):733–763, 2018. https://doi.org/10.1007/s00220-017-3078-4; Majda in Am Math Soc 43(281):93, 1983. https://doi.org/10.1090/memo/0281) and by recent constructions of dissipative incompressible Euler solutions (Brue and De Lellis in Commun Math Phys 400(3):1507–1533, 2023. https://doi.org/10.1007/s00220-022-04626-0 624; Brue et al. in Commun Pure App Anal, 2023), as well as passive scalars (Colombo et al. in Ann PDE 9(2):21–48, 2023. https://doi.org/10.1007/s40818-023-00162-9; Drivas et al. in Arch Ration Mech Anal 243(3):1151–1180, 2022. https://doi.org/10.1007/s00205-021-01736-2). For LtqLxr\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^q_tL^r_x$$\\end{document} suitable Leray–Hopf solutions of the d-\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d-$$\\end{document}dimensional Navier–Stokes equation we prove a bound of the dissipation in terms of the Parabolic Hausdorff measure Ps\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {P}^{s}$$\\end{document}, which gives s=d-2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$s=d-2$$\\end{document} as soon as the solution lies in the Prodi–Serrin class. In the three-dimensional case, this matches with the Caffarelli–Kohn–Nirenberg partial regularity.