Abstract
Understanding turbulence rests delicately on the conflict between Kolmogorov's 1941 theory of nonintermittent, space-filling energy dissipation characterized by a unique scaling exponent and the overwhelming evidence to the contrary of intermittency, multiscaling, and multifractality. Strangely, multifractality is not typically envisioned as a local flow property, variations in which might be clues exposing inroads into the fundamental unsolved issues of anomalous dissipation and finite time blowup. We present a simple construction of local multifractality and find that much of the dissipation field remains surprisingly monofractal àla Kolmogorov. Multifractality appears as small islands in this calm sea, its strength growing logarithmically with the local fluctuations in energy dissipation-a seemingly universal feature. These results suggest new ways to understand how singularities could arise and provide a fresh perspective on anomalous dissipation and intermittency. The simplicity and adaptability of our approach also holds great promise in applications ranging from climate sciences to medical data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.