This study meticulously examines the influence of aluminum (Al) and titanium (Ti) on the genesis of self-generated ordered phases in high-entropy alloys (HEAs), a class of materials that has garnered considerable attention due to their exceptional multifunctionality and versatile compositional palette. By meticulously tuning the concentrations of Al and Ti, this research delves into the modulation of the in situ self-generated ordered phases’ quantity and distribution within the alloy matrix. The annealing heat treatment outcomes revealed that the strategic incorporation of Al and Ti elements facilitates a phase transformation in the Cr-Fe-Ni medium-entropy alloy, transitioning from a BCC (body-centered cubic) phase to a BCC + FCC (face-centered cubic) phase. Concurrently, this manipulation precipitates the emergence of novel phases, including B2, L21, and σ. This orchestrated phase evolution enacts a synergistic enhancement in mechanical properties through second-phase strengthening and solid solution strengthening, culminating in a marked improvement in the compressive properties of the HEA.