This paper reports a previously unreported anomaly that occurs when attempting to perform deep, highly anisotropic etches into fused silica using an Inductively-Coupled Plasma (ICP) etch process. Specifically, it was observed that the top portion of the etched features exhibited a substantially different angle compared to the vertical sidewalls that would be expected in a typical highly anisotropic etch process. This anomaly has been termed as “faceting.” A possible explanation of the mechanism that causes this effect and a method to eradicate it has been developed. Additionally, the method to eliminate the faceting is demonstrated. It is theorized that this faceting is a result of the interaction of the electro-potential electrical fields that surround the patterned nickel layers used as a hard mask and the electrical fields directing the high-energy ions from the plasma to the substrate surface. Based on this theory, an equation for calculating the minimum hard mask thickness required for a desired etch depth into fused silica to avoid faceting was derived. As validation, test samples were fabricated employing hard masks of thicknesses calculated based on the derived equation, and it was found that no faceting was observed on these samples, thereby demonstrating that the solution performed as predicted. Deep highly anisotropic etching of fused silica, as well as other forms of silicon dioxide, including crystalline quartz, using plasma etching, has an important application in the fabrication of several MEMS, NEMS, microelectronic, and photonic devices. Therefore, a method to eliminate faceting is an important development for the accurate control of the dimensions of deep and anisotropic etched features of these devices using ICP etch technology.