In this study, a wing is designed by using NACA 4412 profile and computational numerical analysis is discussed with suction method. First of all, the 3D wing is designed with the SolidWorks and the numerical study of this designed wing is carried out using ANSYS Fluent, a famous CFD (i.e. Computational Fluid Dynamics) software. It is based upon finite volume method approach. Two different configurations are used for numerical study. The first of these configurations is the S1, which represents the initial state of the wing; S2 refers to the wing design with suction channel. The straight flight angle of attack of the wing is 6 degree and the flow separations over the wing, which occurred in 25% of the wing chord length, are calculated at this angle of attack by the numerical study. At this point of chord length, a venturi channel is formed which initial point is the upper surface of the wing and throughout the inner part and finally meets with air from the trailing edge. The main purpose of this channel is to decrease the force at the place where the flow begins to deteriorate during the flight and to increase the aerodynamic performance. In order to be able to examine the change in aerodynamic performance, the lift and drag coefficient values on the wing are obtained in 10 angles of attack (i.e. -6, -4, -2, 0, 2, 4, 6, 8, 10, 12) separately for both configurations. These coefficients obtained for S1 and S2 configurations are compared with each other. In this numerical study based on the comparison results, it is found that there is a significant increase in the performance of S2 configuration compared to the S1 configuration.
Read full abstract