BackgroundSeverely destructive disasters can often lead to heavy casualties. Large arterial injury in disasters, particularly, often results in high mortality and morbidity. Although minimally invasive intervention has achieved positive effects in diagnosing and treating vascular injuries, it is still unavailable at the disaster area of any country due to lack of on-spot catheterization labs. This study aimed to test the feasibility of adopting interventional techniques to treat haemorrhage of large arterial injuries in remote and austere wild environments after severely destructive disasters, by using a new mobile intervention suite we developed—the mobile minimally invasive interventional shelter (MIS).MethodsLarge animal models of aortic and femoral arterial injuries were established using a newly developed medium vehicle-mounted digital subtraction angiography (DSA) machine in MIS. The endovascular stent-graft exclusion and balloon occlusion combined with surgical hemostasis were performed respectively following the protocols for rapid interventional therapy. The treatment capacity of the shelter was evaluated based on its stability, surgery duration and the clinical results.Results and discussionThe stability of the medical devices in MIS directly relates to the efficiency and success rate of interventional treatment. The newly developed vehicle-mounted DSA machine showed good imaging performance and the operation of all equipments and devices in MIS were stable in interventional procedures. All the interventional treatments for large arterial injuries were performed smoothly. The average time for treating abdominal aortic injury and femoral arterial injury was 23 ± 11 and 55 ± 17 min, respectively. And the operation success rate reached 100 %.ConclusionIt is feasible to perform interventional operations to control haemorrhage of large arterial injuries in MIS outside hospital. The MIS has a great potential to save patients from dying of hemorrhagic shock due to lack of effective treatment devices and approaches in remote and austere wild environments, such as in disaster areas.