BackgroundLaboratory resurrection of ancient coagulation factor (F) IX variants generated through ancestral sequence reconstruction led to the discovery of a FIX variant, designated An96, which possesses enhanced specific activity independent of and additive to that provided by human p.Arg384Lys, referred to as FIX-Padua. ObjectivesThe goal of the current study was to identify the amino acid substitution(s) responsible for the enhanced activity of An96 and create a humanized An96 FIX transgene for gene therapy application. MethodsReductionist screening approaches, including domain swapping and scanning residue substitution, were used and guided by one-stage FIX activity assays. In vitro characterization of top candidates included recombinant high-purity preparation, specific activity determination, and enzyme kinetic analysis. Final candidates were packaged into adeno-associated viral (AAV) vectors and delivered to hemophilia B mice. ResultsFive of 42 total amino acid substitutions in An96 appear sufficient to retain the enhanced activity of An96 in an otherwise human FIX variant. Additional substitution of the Padua variant further increased the specific activity 5-fold. This candidate, designated ET9, demonstrated 51-fold greater specific activity than hFIX. AAV2/8-ET9 treated hemophilia B mice produced plasma FIX activities equivalent to those observed previously for AAV2/8-An96-Padua, which were 10-fold higher than AAV2/8-hFIX-Padua. ConclusionStarting from computationally inferred ancient FIX sequences, novel amino acid substitutions conferring activity enhancement were identified and translated into an AAV-FIX gene therapy cassette demonstrating high potency. This ancestral sequence reconstruction discovery and sequence mapping refinement approach represents a promising platform for broader protein drug and gene therapy candidate optimization.
Read full abstract