Abstract

Nef is an accessory protein unique to the primate HIV-1, HIV-2, and SIV lentiviruses. During infection, Nef functions by interacting with multiple host proteins within infected cells to evade the immune response and enhance virion infectivity. Notably, Nef can counter immune regulators such as CD4 and MHC-I, as well as the SERINC5 restriction factor in infected cells. In this study, we generated a posterior sample of time-scaled phylogenies relating SIV and HIV Nef sequences, followed by reconstruction of ancestral sequences at the root and internal nodes of the sampled trees up to the HIV-1 Group M ancestor. Upon expression of the ancestral primate lentivirus Nef protein within CD4+ HeLa cells, flow cytometry analysis revealed that the primate lentivirus Nef ancestor robustly downregulated cell-surface SERINC5, yet only partially downregulated CD4 from the cell surface. Further analysis revealed that the Nef-mediated CD4 downregulation ability evolved gradually, while Nef-mediated SERINC5 downregulation was recovered abruptly in the HIV-1/M ancestor. Overall, this study provides a framework to reconstruct ancestral viral proteins and enable the functional characterization of these proteins to delineate how functions could have changed throughout evolutionary history.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call