At 4℃ and with no substrate, the activity recovery of ANAMMOX granular sludge was examined after 230 days of storage, and the effect of adding two organic carbon sources (glucose and sodium propionate) on the recovery was explored. After 230 days of long-term storage, the activity of ANAMMOX bacteria was 0.013 g·(g·d)-1, which was just 6.02% of the baseline, and the average particle size was 135.05 μm, which was 38.23% lower. The sludge disintegration, black in color. In the activity recovery stage, the R2 and R3 reactors added glucose and sodium propionate as organic carbon sources. The recovery results showed that after 15 days of recovery, the PN content of the R1, R2, and R3 reactors reached 126.30, 188.86, and 168.82 mg·g-1, respectively, and the activity of the ANAMMOX bacteria was improved, reaching 0.145, 0.185, and 0.126 g·(g·d)-1, respectively. The R2 reactor with glucose as the organic carbon source had the highest ANAMMOX bacteria activity, which recovered 85.65% before preservation, and the total nitrogen removal rate reached 81.61%. On the 20th day, the particle sizes of the ANAMMOX granular sludge in the R1, R2, and R3 reactors were 289.81, 359.66, and 314.37 μm, respectively, indicating that the long-term preservation of ANAMMOX granular sludge is not an insurmountable problem. Furthermore, adding glucose during the recovery phase can not only effectively increase the EPS content and promote particle growth and adhesion, but also enrich the reaction pathways of ANAMMOX, enhancing recovery rates.
Read full abstract