Abstract

When treating wastewaters prone to inert precipitation with granular sludge systems, mineral formation needs to be properly controlled to ensure system’s long-term stability. In this work, an extensive study on mineral precipitation on the surface of anammox granular sludge is presented. A 7-L reactor was inoculated with one-year stored biomass and volumetric load up to 0.48 gN-NO2-/l/d were achieved, with nitrite removal above 95% and total nitrogen removal rate of almost 1 gN/l/d. Severe mineral precipitation was observed on the granules’ surface after three months of hard-water feeding and resulted in a dramatic deterioration of reactor performance and biomass activity. Substrate diffusion limitation in the inner layers, insufficient mixing due to higher granule density and biofilm erosion due to shear stress increase were deemed the main mechanisms that lead to progressive process disruption. Gravimetric selection was applied to discard granules affected by precipitation and allowed for process restoration. Microbial community analyses revealed that mineral composition possibly affected competition between “Ca. Brocadia” and “Ca. Kuenenia”. The knowledge gathered in the present study details the dramatic consequences on process performance lead by severe mineral precipitation and it is presented as a warning for full-scale applications treating wastewaters prone to precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.