We employ the Laplace Residual Power Series Method to approximate analytical solutions for differential equations and neutrosophic differential equations with associated parameters, including non-homogeneous equations and fractional formulas in partial differential equations (PDEs). This approach showcases the method's simplicity, effectiveness, and robustness in deriving analytical series solutions for PDEs that involve associated parameters, especially in the context of fractional differential equations. Several practical uses of LRPSM with an emphasis on non-homogeneous and partial differential equations and neutrosophic equations with fractions (PDEs). These applications are significant in a variety of scientific and engineering domains that simulate complicated dynamic system such as anomalous diffusion in physics, viscoelastic material modeling in engineering and signal processing.
Read full abstract