Abstract

AbstractTo study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat generation/absorption source and chemical reaction are also considered. The formulations of a such physical phenomenon are going to form the PDEs. Through appropriate similarity variables, these governing partial differential equations for flow and energy transport are converted into the ordinary differential. The analytical series solutions are obtained through the use of a homotopic approach. The graphical upshots are conducted for velocity fields, temperature, and concentration distributions. In addition, energy transport analysis is performed for two kinds of surface heating mechanisms, namely the prescribed surface temperature (PST) and constant wall temperature (CWT). The outcomes of the current investigation revealed that a higher rate of heat transfer is observed in the case of CWT as compared to PST. Moreover, the increasing values of thermal and solutal relaxation time parameters reduce the heat and mass transport in the fluid flow, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.