Abstract

AbstractThe key attention of this paper is to explore the heat and mass transport in oscillatory hydromagnetic Titanium alloy water nanofluid flow within two vertical alternatively non‐conducting and conducting walls enclosing Darcy‐Brinkman porous medium. Motional induction is considered because it is sufficiently strong in comparison to Ohmic dissipation. Hall phenomenon is considered because the electromotive force induced due to revolving of fluid particle about the magnetic field lines is significant. Suitable physical laws (constitutive and field equations) are used to derive the equations leading the flow model. An analytical approach is followed to extract the solutions of the flow model. The quantities of physical interest such as wall shear stress (WSS), rate of heat transport rate (RHT) and rate of mass transport rate (RMT) at the walls are obtained from the extracted solutions. The physical insight into flow manners is discovered from the graphs and tables generated from the numerical computation of the solutions. It is important to note from the study that the volume concentration of nanofluid and magnetic diffusion produce resistivity in the flow and tends to slow down the fluid flow. Magnetic diffusion weakens the strength of the primarily motional induced magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call