This paper aims to investigate the benthic-drift population model in both open and closed advective environments, focusing on the logistic growth of benthic populations. We obtain the threshold dynamics using the monotone iteration method, and show that the zero solution is globally attractive straightforward when linearly stable. When unstable, limits from monotonic iteration of upper and lower solutions are upper and lower semi-continuous, respectively. By employing a part metric, we prove these limits are equal and continuous, leading to a positive steady state. In the critical case, we establish that the limit function from the upper solution iteration must be the zero solution by analyzing an algebraic equation. Furthermore, we conduct a quantitative analysis of the principal eigenvalue for a non-self-adjoint eigenvalue problem to examine how the diffusion rate, advection rate, and population release rates influence the dynamics. The results suggest that the diffusion rate and advection rate have distinct effects on population dynamics in open and closed advective environments, depending on the population release rates.
Read full abstract