Hydroxyapatite (HAp)/collagen (Col) cylinders with laminated collagen layers were implanted into the tibial diaphysis of rats and examined histochemically to clarify how the orientation of HAp and Col bone-like nanocomposite fibers in HAp/Col blocks affects bone resorption and formation. HAp/Col fibers were synthesized and compressed into cylindrical blocks to mimic bone nanostructures. These were implanted into the cortical bone cavities of 10-week-old male Wistar rats with fiber bundles parallel to the tibial surface. The implants were histologically analyzed at 3, 5, 7, 14, and 28 days after implantation. TRAP-positive osteoclasts appeared after 3-5 days in the lateral region of the graft, where the fiber ends were exposed, but not in the bottom region, where the HAp/Col fibers were parallel to the surface. Osteoclasts were observed in both regions by day 14. PHOSPHO1-positive osteoblasts were first detected on day 5, appearing slightly away from the cylinder laterally but directly on the bottom surface. A few osteoblasts contacted the block laterally, whereas many were observed on the new bone tissue at the bottom, between days 7 and 14. Bone formation was induced earlier in the bottom region, whereas lateral resorption was dominant. This suggested the uncoupling of bone resorption and formation in the early postimplantation stages. However, bone remodeling shifted to coupling between osteoclasts and osteoblasts throughout the cylinder by day 28. The orientation of HAp/Col fibers in HAp/Col graft materials substantially affected the preferential induction of bone resorption or formation during the early stages of bone regeneration.
Read full abstract