The first member of the Qingshankou Formation (Qing Member 1) is rich in oil and gas resources and represents the first lacustrine transgression period, during which the lake basin area reached its maximum. This study utilizes major and trace element analyses, along with pyrolysis, to investigate the sedimentary environment and mechanisms of organic matter enrichment in the hydrocarbon source rocks of the Heiyupao Depression Qing Member 1. The results indicate that the hydrocarbon source rocks in this area exhibit good to excellent organic richness, mainly comprising Type I and Type II1 organic matter, and are at a high stage of maturity. Furthermore, the paleoclimate conditions during the Qing Member 1 period in the study area were characterized by a warm and humid climate, with an open lake basin and freshwater to brackish water conditions. The water was low in oxygen, suboxic to anoxic, and had relatively high primary productivity. Multiple marine transgressions occurred during the Qing Member 1, transporting substantial nutrients into the lake, which promoted algal blooms in the water. The correlation analysis of TOC content in the Qing Member 1 shale and various indicators shows that the enrichment of organic matter in the study area is primarily influenced by paleoproductivity and paleosalinity, while paleoclimate, paleoredox conditions, and paleowater are not the main controlling factors for organic matter enrichment in the area. Organic matter only accumulates under relatively high salinity and paleoproductivity conditions. Event-driven marine transgressions also play an essential role in enhancing paleoproductivity. Therefore, the organic matter enrichment model in the study area is more aligned with a productivity-driven model. Finally, a comprehensive organic matter enrichment model of hydrocarbon source rocks in the Qing Member 1 of the Heiyupao Depression is proposed.
Read full abstract