Abstract

Monochromatic excitation X-ray fluorescence (ME-XRF) spectrometry emerges as a novel technique in trace element analysis, distinguished by its simplicity, rapidity, and efficiency. Its application in forensic toxicology has grown significantly for identifying toxic trace metals in biological samples. This study further expands its utility by developing a method for the rapid determination of arsenic (As), mercury (Hg), thallium (Tl), and lead (Pb) in hair samples. Calibration curves were established using analytical reference samples, and optimal detection conditions were determined and validated. The LODs for As, Hg, Tl, and Pb were 0.03, 0.03, 0.03, and 0.05μgg-1, respectively. Method precision was evaluated through seven parallel analyses of samples within the concentration range of 0.27 to 20.051μgg⁻1, with relative standard deviations (RSDs) consistently below 10%. The feasibility of the ME-XRF technique for forensic toxicology analysis was validated through the analysis of authentic poisoned hair samples collected from the animal experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.