A differential screening study using high-resolution (HR)-hydrophilic interaction chromatography (HILIC)-electrospray ionization (ESI)–quadrupole time-of-flight mass spectrometry (Q-TOF MS) was conducted to identify saxitoxin (STX) analogues in the marine dinoflagellate toxic sub-clone Alexandrium tamarense Axat-2 and the non-toxic sub-clone UAT-014-009 derived from the same Japanese isolate. One unknown compound was identified only in the toxic sub-clone and was found to have the molecular formula C9H16N6O2. This structure differed from that of decarbamoyl STX (dcSTX; C9H16N6O3) by the loss of a single oxygen. A 12-deoxy-dcSTX standard (a mixture of 12α- and β-deoxy-dcSTX) was chemically prepared from dcSTX by reduction with sodium borohydride. The unknown compound in the toxic strain of A. tamarense was identified as 12β-deoxy-dcSTX by comparison of its HR-HILIC-LC–MS retention time and HR–MS/MS spectrum with those of the chemically prepared standard, and the identification was confirmed by high-sensitivity HPLC analysis with post-column fluorescent derivatization. Moreover, two Japanese isolates of A. catenella showing toxin profiles different from that of A. tamarense were also found to contain 12β-deoxy-dcSTX. Previously, 12β-deoxy-dcSTX was isolated from the freshwater cyanobacterium Lyngbya wollei, which produces a unique set of STX analogues. This study is the first evidence of the presence of 12β-deoxy-dcSTX in marine dinoflagellates.
Read full abstract