In this paper, we present a concise four-dimensional (4D) conservative chaotic system with a wide parameter range. Since there are no terms higher than first order, the circuit does not contain multipliers, resulting in a simple circuit implementation. The nonlinear dynamic characteristics, such as phase diagrams, equilibrium points, divergence, Poincaré cross-sections, Lyapunov exponents, bifurcation diagrams, and Lyapunov dimension, are analyzed in detail, which illustrates the conservativity. Besides, the system exhibits different offset boosting behaviors. Through offset boosting, the system can propagate along a line, convert signal polarity, control variable amplitude, generate coexisting attractors, and even induce changes in its state. Specially, we realize the transition from a single-vortex attractor to a multivortex one by some changes in the initial values. Furthermore, the Pearson correlation coefficient is used to demonstrate the higher initial value sensitivity of the system. Finally, the system is implemented through Multisim simulation and analog circuit separately, and their consistency validates the system effectively.