The integration of functional materials into electronic devices has become a key approach to extending Moore's law by increasing the functional density of electronic circuits. Here, we present a device technology based on ultrascaled ferroelectric, antiambipolar transistors (ferro-AAT) with robust negative transconductance, enabling a wide range of reconfigurable functionalities with applications in both the digital and analog domains. The device relies on the integration of a hafnia-based ferroelectric gate stack on a vertical nanowire tunnel field-effect transistor. Through intentional gate/source overlap and tunnel-junction engineering, we demonstrate enhanced antiambipolarity with a high negative transconductance that is reconfigurable using the nonvolatile remanent polarization of the ferroelectric. Experimental validation highlights the versatility of this ferro-AAT in two implementation scenarios: content addressable memory (CAM) for high-density data search and reconfigurable signal processing in analog circuits. As a single-transistor cell for CAMs, the ferro-AAT shows subpicojoule operation for one search with a compact footprint of ∼0.01 μm2. For single-transistor-based signal modulation, multistate reconfigurations and high power conversion (>95%) are achieved in the ferro-AAT, resulting in a significant reduction in the complexity of analog circuit design. Our results reveal that the distinctive device properties allow ferro-AATs to operate beyond conventional transistors with multiple reconfigurable functionalities, ultrascaled footprint, and low power consumption.